47 research outputs found

    International conference on the healthy effect of virgin olive oil

    Get PDF
    Ageing represents a great concern in developed countries because the number of people involved and the pathologies related with it, like atherosclerosis, morbus Parkinson, Alzheime's disease, vascular dementia, cognitive decline, diabetes and cancer. Epidemiological studies suggest that a Mediterranean diet (which is rich in virgin olive oil) decreases the risk of cardiovascular disease. The Mediterranean diet, rich in virgin olive oil, improves the major risk factors for cardiovascular disease, such as the lipoprotein profile, blood pressure, glucose metabolism and antithrombotic profile. Endothelial function, inflammation and oxidative stress are also positively modulated. Some of these effects are attributed to minor components of virgin olive oil. Therefore, the definition of the Mediterranean diet should include virgin olive oil. Different observational studies conducted in humans have shown that the intake of monounsaturated fat may be protective against age-related cognitive decline and Alzheimer's disease. Microconstituents from virgin olive oil are bioavailable in humans and have shown antioxidant properties and capacity to improve endothelial function. Furthermore they are also able to modify the haemostasis, showing antithrombotic properties. In countries where the populations fulfilled a typical Mediterranean diet, such as Spain, Greece and Italy, where virgin olive oil is the principal source of fat, cancer incidence rates are lower than in northern European countries. The protective effect of virgin olive oil can be most important in the first decades of life, which suggests that the dietetic benefit of virgin olive oil intake should be initiated before puberty, and maintained through life. The more recent studies consistently support that the Mediterranean diet, based in virgin olive oil, is compatible with a healthier ageing and increased longevity. However, despite the significant advances of the recent years, the final proof about the specific mechanisms and contributing role of the different components of virgin olive oil to its beneficial effects requires further investigations. © 2005 Blackwell Publishing Ltd

    Biomarkers characterization of circulating tumour cells in breast cancer patients

    Get PDF
    Introduction: Increasing evidence supports the view that the detection of circulating tumor cells (CTCs) predicts outcomes of nonmetastatic breast cancer patients. CTCs differ genetically from the primary tumor and may contribute to variations in prognosis and response to therapy. As we start to understand more about the biology of CTCs, we can begin to address how best to treat this form of disease. Methods: Ninety-eight nonmetastatic breast cancer patients were included in this study. CTCs were isolated by immunomagnetic techniques using magnetic beads labelled with a multi-CK-specific antibody (CK3-11D5) and CTC detection through immunocytochemical methods. Estrogen receptor, progesterone receptor and epidermal growth factor receptor (EGFR) were evaluated by immunofluorescence experiments and HER2 and TOP2A by fluorescence in situ hybridization. We aimed to characterize this set of biomarkers in CTCs and correlate it with clinical-pathological characteristics. Results: Baseline detection rate was 46.9% ≄ 1 CTC/30 ml threshold. CTC-positive cells were more frequent in HER2-negative tumors (p = 0.046). In patients younger than 50 years old, HER2-amplified and G1-G2 tumors had a higher possibility of being nondetectable CTCs. Heterogeneous expression of hormonal receptors (HRs) in samples from the same patients was found. Discordances between HR expression, HER2 and TOP2A status in CTCs and their primary tumor were found in the sequential blood samples. Less that 35% of patients switched their CTC status after receiving chemotherapy. EGFR-positive CTCs were associated with Luminal tumors (p = 0.03). Conclusions: This is the largest exploratory CTC biomarker analysis in nonmetastatic BC patients. Our study suggests that CTC biomarkers profiles might be useful as a surrogate marker for therapeutic selection and monitoring since heterogeneity of the biomarker distribution in CTCs and the lack of correlation with the primary tumor biomarker status were found. Further exploration of the association between EGFR-positive CTCs and Luminal tumors is warranted

    Transcriptional Shift Identifies a Set of Genes Driving Breast Cancer Chemoresistance

    Get PDF
    Background Distant recurrences after antineoplastic treatment remain a serious problem for breast cancer clinical management, which threats patients’ life. Systemic therapy is administered to eradicate cancer cells from the organism, both at the site of the primary tumor and at any other potential location. Despite this intervention, a significant proportion of breast cancer patients relapse even many years after their primary tumor has been successfully treated according to current clinical standards, evidencing the existence of a chemoresistant cell subpopulation originating from the primary tumor.Methods/Findings To identify key molecules and signaling pathways which drive breast cancer chemoresistance we performed gene expression analysis before and after anthracycline and taxane-based chemotherapy and compared the results between different histopathological response groups (good-, mid- and bad-response), established according to the Miller & Payne grading system. Two cohorts of 33 and 73 breast cancer patients receiving neoadjuvant chemotherapy were recruited for whole-genome expression analysis and validation assay, respectively. Identified genes were subjected to a bioinformatic analysis in order to ascertain the molecular function of the proteins they encode and the signaling in which they participate. High throughput technologies identified 65 gene sequences which were over-expressed in all groups (P ≀ 0·05 Bonferroni test). Notably we found that, after chemotherapy, a significant proportion of these genes were over-expressed in the good responders group, making their tumors indistinguishable from those of the bad responders in their expression profile (P ≀ 0.05 Benjamini-Hochgerg`s method).Conclusions These data identify a set of key molecular pathways selectively up-regulated in post-chemotherapy cancer cells, which may become appropriate targets for the development of future directed therapies against breast cancer.Thanks are due to the ConsejerĂ­a de Economia, InnovaciĂłn y Ciencia (CEIC) from the Junta de AndalucĂ­a and Fondo Europeo de Desarrollo Regional (FEDER)/Fondo de CohesiĂłn Europeo (FSE) to financial support through the Programa Operativo FEDER/FSE de AndalucĂ­a 2007-2013 and the research project CTS-5350. The authors also acknowledge financial support by the PN de I+D+i 2006-2009/ISCIII/Ministerio de Sanidad, Servicios Sociales e Igualdad (Spain) and Fondo Europeo de Desarrollo Regional (FEDER) from the European Union, through the research project PI06/90388

    Polymorphisms within autophagy-related genes as susceptibility biomarkers for multiple myeloma: a meta-analysis of three large cohorts and functional characterization

    Get PDF
    Functional data used in this project have been meticulously catalogued and archived in the BBMRI-NL data infrastructure (https://hfgp.bbmri.nl/, accessed on 12 February 2020) using the MOLGENIS open-source platform for scientific data.Multiple myeloma (MM) arises following malignant proliferation of plasma cells in the bone marrow, that secrete high amounts of specific monoclonal immunoglobulins or light chains, resulting in the massive production of unfolded or misfolded proteins. Autophagy can have a dual role in tumorigenesis, by eliminating these abnormal proteins to avoid cancer development, but also ensuring MM cell survival and promoting resistance to treatments. To date no studies have determined the impact of genetic variation in autophagy-related genes on MM risk. We performed meta-analysis of germline genetic data on 234 autophagy-related genes from three independent study populations including 13,387 subjects of European ancestry (6863 MM patients and 6524 controls) and examined correlations of statistically significant single nucleotide polymorphisms (SNPs; p < 1 × 10−9) with immune responses in whole blood, peripheral blood mononuclear cells (PBMCs), and monocyte-derived macrophages (MDM) from a large population of healthy donors from the Human Functional Genomic Project (HFGP). We identified SNPs in six loci, CD46, IKBKE, PARK2, ULK4, ATG5, and CDKN2A associated with MM risk (p = 4.47 × 10−4−5.79 × 10−14). Mechanistically, we found that the ULK4rs6599175 SNP correlated with circulating concentrations of vitamin D3 (p = 4.0 × 10−4), whereas the IKBKErs17433804 SNP correlated with the number of transitional CD24+CD38+ B cells (p = 4.8 × 10−4) and circulating serum concentrations of Monocyte hemoattractant Protein (MCP)-2 (p = 3.6 × 10−4). We also found that the CD46rs1142469 SNP corre lated with numbers of CD19+ B cells, CD19+CD3− B cells, CD5+ IgD− cells, IgM− cells, IgD−IgM− cells, and CD4−CD8− PBMCs (p = 4.9 × 10−4−8.6 × 10−4 ) and circulating concentrations of interleukin (IL)-20 (p = 0.00082). Finally, we observed that the CDKN2Ars2811710 SNP correlated with levels of CD4+EMCD45RO+CD27− cells (p = 9.3 × 10−4 ). These results suggest that genetic variants within these six loci influence MM risk through the modulation of specific subsets of immune cells, as well as vitamin D3−, MCP-2−, and IL20-dependent pathways.This work was supported by the European Union’s Horizon 2020 research and innovation program, N° 856620 and by grants from the Instituto de Salud Carlos III and FEDER (Madrid, Spain; PI17/02256 and PI20/01845), Consejería de Transformación Económica, Industria, Conocimiento y Universidades and FEDER (PY20/01282), from the CRIS foundation against cancer, from the Cancer Network of Excellence (RD12/10 Red de Cáncer), from the Dietmar Hopp Foundation and the German Ministry of Education and Science (BMBF: CLIOMMICS [01ZX1309]), and from National Cancer Institute of the National Institutes of Health under award numbers: R01CA186646, U01CA249955 (EEB).This work was also funded d by Portuguese National funds, through the Foundation for Science and Technology (FCT)—project UIDB/50026/2020 and UIDP/50026/2020 and by the project NORTE-01-0145-FEDER-000055, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF)

    Polyphenols and IUGR pregnancies: Maternal hydroxytyrosol supplementation improves prenatal and early-postnatal growth and metabolism of the offspring.

    Get PDF
    Hydroxytyrosol is a polyphenol with antioxidant, metabolism-regulatory, anti-inflammatory and immuno-modulatory properties. The present study aimed to determine whether supplementing the maternal diet with hydroxytyrosol during pregnancy can improve pre- and early post-natal developmental patterns and metabolic traits of the offspring. Experiment was performed in Iberian sows fed a restricted diet in order to increase the risk of IUGR. Ten sows were treated daily with 1.5 mg of hydroxytyrosol per kg of feed between Day 35 of pregnancy (30% of total gestational period) until delivery whilst 10 animals were left untreated as controls. Number and weight of offspring were assessed at birth, on post-natal Day 15 and at weaning (25 days-old). At weaning, body composition and plasma indexes of glucose and lipids were measured. Treatment with hydroxytyrosol was associated with higher mean birth weight, lower incidence of piglets with low birth weight. Afterwards, during the lactation period, piglets in the treated group showed a higher body-weight than control piglets; such effects were even stronger in the most prolific litters. These results suggest that maternal supplementation with hydroxytyrosol may improve pre- and early post-natal development of offspring in pregnancies at risk of IUGR

    Functional annotation and network analysis of the Chemoresitance dataset by IPA software.

    No full text
    <p>A) List of predicted inhibited and activated functions according the Chemoresistance dataset. B) Summary of the IPA network analysis of the Chemoresistance dataset C) Gene-expression network resulting from merging overlapping Networks 2, 3 and 4 according to IPA network analysis.</p

    Population demographics and pre-chemotherapy clinical characteristics.

    No full text
    <p>Results are presented as n (%) of 33 patients for the whole-genome expression analysis cohort and as n (%) of 73 patients for the validation assay cohort.</p><p>Abbreviations: AJCC, American Joint Committee on Cancer; BR, bad response group; GR, good response group; Her2G, Her2-positive group; MRH, mid-response high group; MRL, mid-response low group; NA, not applicable.</p

    Main results from Post-CT vs Pre-CT comparisons in the validation assay.

    No full text
    <p>A) Log<sub>10</sub> fold change in mRNA abundance of each differentially expressed gene after chemotherapy considering all experimental groups together (Post-CT vs Pre-CT) and each experimental group individually –GR (Post-CT vs Pre-CT), Her2G (Post-CT vs Pre-CT), MRH (Post-CT vs Pre-CT) and MRL (Post-CT vs Pre-CT)-. B) Venn diagram outlining differentially expressed genes after chemotherapy in each pathological response group with respect differentially expressed genes after chemotherapy considering all experimental groups. C) Venn diagram outlining differentially expressed genes after chemotherapy in the four pathological response groups. D) Log<sub>10</sub> fold change in mRNA abundance of genes differentially expressed after chemotherapy considering all experimental groups together (Post-CT vs Pre-CT) and GR –GR (Post-CT vs Pre-CT)-.</p
    corecore